Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolic engineering of glycerol production in Saccharomyces cerevisiae.

Identifieur interne : 002761 ( Main/Exploration ); précédent : 002760; suivant : 002762

Metabolic engineering of glycerol production in Saccharomyces cerevisiae.

Auteurs : Karin M. Overkamp [Pays-Bas] ; Barbara M. Bakker ; Peter Kötter ; Marijke A H. Luttik ; Johannes P. Van Dijken ; Jack T. Pronk

Source :

RBID : pubmed:12039737

Descripteurs français

English descriptors

Abstract

Inactivation of TPI1, the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1-null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dihydroxyacetone phosphate to glycerol. We hypothesize that the growth defect of tpi1-null mutants is caused by mitochondrial reoxidation of cytosolic NADH, thus rendering it unavailable for dihydroxyacetone-phosphate reduction. To test this hypothesis, a tpi1delta nde1delta nde2delta gut2delta quadruple mutant was constructed. NDE1 and NDE2 encode isoenzymes of mitochondrial external NADH dehydrogenase; GUT2 encodes a key enzyme of the glycerol-3-phosphate shuttle. It has recently been demonstrated that these two systems are primarily responsible for mitochondrial oxidation of cytosolic NADH in S. cerevisiae. Consistent with the hypothesis, the quadruple mutant grew on glucose as the sole carbon source. The growth on glucose, which was accompanied by glycerol production, was inhibited at high-glucose concentrations. This inhibition was attributed to glucose repression of respiratory enzymes as, in the quadruple mutant, respiratory pyruvate dissimilation is essential for ATP synthesis and growth. Serial transfer of the quadruple mutant on high-glucose media yielded a spontaneous mutant with much higher specific growth rates in high-glucose media (up to 0.10 h(-1) at 100 g of glucose. liter(-1)). In aerated batch cultures grown on 400 g of glucose. liter(-1), this engineered S. cerevisiae strain produced over 200 g of glycerol. liter(-1), corresponding to a molar yield of glycerol on glucose close to unity.

DOI: 10.1128/aem.68.6.2814-2821.2002
PubMed: 12039737
PubMed Central: PMC123913


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolic engineering of glycerol production in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Overkamp, Karin M" sort="Overkamp, Karin M" uniqKey="Overkamp K" first="Karin M" last="Overkamp">Karin M. Overkamp</name>
<affiliation wicri:level="3">
<nlm:affiliation>Kluyver Laboratory of Biotechnology, Delft University of Technology, NL-2628 BC Delft, Amsterdam.</nlm:affiliation>
<country>Pays-Bas</country>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<wicri:orgArea>Kluyver Laboratory of Biotechnology, Delft University of Technology, NL-2628 BC Delft</wicri:orgArea>
</affiliation>
</author>
<author>
<name sortKey="Bakker, Barbara M" sort="Bakker, Barbara M" uniqKey="Bakker B" first="Barbara M" last="Bakker">Barbara M. Bakker</name>
</author>
<author>
<name sortKey="Kotter, Peter" sort="Kotter, Peter" uniqKey="Kotter P" first="Peter" last="Kötter">Peter Kötter</name>
</author>
<author>
<name sortKey="Luttik, Marijke A H" sort="Luttik, Marijke A H" uniqKey="Luttik M" first="Marijke A H" last="Luttik">Marijke A H. Luttik</name>
</author>
<author>
<name sortKey="Van Dijken, Johannes P" sort="Van Dijken, Johannes P" uniqKey="Van Dijken J" first="Johannes P" last="Van Dijken">Johannes P. Van Dijken</name>
</author>
<author>
<name sortKey="Pronk, Jack T" sort="Pronk, Jack T" uniqKey="Pronk J" first="Jack T" last="Pronk">Jack T. Pronk</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12039737</idno>
<idno type="pmid">12039737</idno>
<idno type="pmc">PMC123913</idno>
<idno type="doi">10.1128/aem.68.6.2814-2821.2002</idno>
<idno type="wicri:Area/Main/Corpus">002787</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002787</idno>
<idno type="wicri:Area/Main/Curation">002787</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002787</idno>
<idno type="wicri:Area/Main/Exploration">002787</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolic engineering of glycerol production in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Overkamp, Karin M" sort="Overkamp, Karin M" uniqKey="Overkamp K" first="Karin M" last="Overkamp">Karin M. Overkamp</name>
<affiliation wicri:level="3">
<nlm:affiliation>Kluyver Laboratory of Biotechnology, Delft University of Technology, NL-2628 BC Delft, Amsterdam.</nlm:affiliation>
<country>Pays-Bas</country>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<wicri:orgArea>Kluyver Laboratory of Biotechnology, Delft University of Technology, NL-2628 BC Delft</wicri:orgArea>
</affiliation>
</author>
<author>
<name sortKey="Bakker, Barbara M" sort="Bakker, Barbara M" uniqKey="Bakker B" first="Barbara M" last="Bakker">Barbara M. Bakker</name>
</author>
<author>
<name sortKey="Kotter, Peter" sort="Kotter, Peter" uniqKey="Kotter P" first="Peter" last="Kötter">Peter Kötter</name>
</author>
<author>
<name sortKey="Luttik, Marijke A H" sort="Luttik, Marijke A H" uniqKey="Luttik M" first="Marijke A H" last="Luttik">Marijke A H. Luttik</name>
</author>
<author>
<name sortKey="Van Dijken, Johannes P" sort="Van Dijken, Johannes P" uniqKey="Van Dijken J" first="Johannes P" last="Van Dijken">Johannes P. Van Dijken</name>
</author>
<author>
<name sortKey="Pronk, Jack T" sort="Pronk, Jack T" uniqKey="Pronk J" first="Jack T" last="Pronk">Jack T. Pronk</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Culture Techniques (MeSH)</term>
<term>Cytosol (metabolism)</term>
<term>Genetic Engineering (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Glycerol (metabolism)</term>
<term>Glycerophosphates (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>NAD (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cytosol (métabolisme)</term>
<term>Glucose (métabolisme)</term>
<term>Glycérol (métabolisme)</term>
<term>Glycérophosphate (métabolisme)</term>
<term>Génie génétique (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>NAD (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Techniques de culture cellulaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucose</term>
<term>Glycerol</term>
<term>Glycerophosphates</term>
<term>NAD</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Mitochondria</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytosol</term>
<term>Glucose</term>
<term>Glycérol</term>
<term>Glycérophosphate</term>
<term>Mitochondries</term>
<term>NAD</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Culture Techniques</term>
<term>Genetic Engineering</term>
<term>Oxidation-Reduction</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génie génétique</term>
<term>Oxydoréduction</term>
<term>Phénotype</term>
<term>Techniques de culture cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Inactivation of TPI1, the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1-null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dihydroxyacetone phosphate to glycerol. We hypothesize that the growth defect of tpi1-null mutants is caused by mitochondrial reoxidation of cytosolic NADH, thus rendering it unavailable for dihydroxyacetone-phosphate reduction. To test this hypothesis, a tpi1delta nde1delta nde2delta gut2delta quadruple mutant was constructed. NDE1 and NDE2 encode isoenzymes of mitochondrial external NADH dehydrogenase; GUT2 encodes a key enzyme of the glycerol-3-phosphate shuttle. It has recently been demonstrated that these two systems are primarily responsible for mitochondrial oxidation of cytosolic NADH in S. cerevisiae. Consistent with the hypothesis, the quadruple mutant grew on glucose as the sole carbon source. The growth on glucose, which was accompanied by glycerol production, was inhibited at high-glucose concentrations. This inhibition was attributed to glucose repression of respiratory enzymes as, in the quadruple mutant, respiratory pyruvate dissimilation is essential for ATP synthesis and growth. Serial transfer of the quadruple mutant on high-glucose media yielded a spontaneous mutant with much higher specific growth rates in high-glucose media (up to 0.10 h(-1) at 100 g of glucose. liter(-1)). In aerated batch cultures grown on 400 g of glucose. liter(-1), this engineered S. cerevisiae strain produced over 200 g of glycerol. liter(-1), corresponding to a molar yield of glycerol on glucose close to unity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12039737</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>07</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>68</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2002</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolic engineering of glycerol production in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>2814-21</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Inactivation of TPI1, the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1-null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dihydroxyacetone phosphate to glycerol. We hypothesize that the growth defect of tpi1-null mutants is caused by mitochondrial reoxidation of cytosolic NADH, thus rendering it unavailable for dihydroxyacetone-phosphate reduction. To test this hypothesis, a tpi1delta nde1delta nde2delta gut2delta quadruple mutant was constructed. NDE1 and NDE2 encode isoenzymes of mitochondrial external NADH dehydrogenase; GUT2 encodes a key enzyme of the glycerol-3-phosphate shuttle. It has recently been demonstrated that these two systems are primarily responsible for mitochondrial oxidation of cytosolic NADH in S. cerevisiae. Consistent with the hypothesis, the quadruple mutant grew on glucose as the sole carbon source. The growth on glucose, which was accompanied by glycerol production, was inhibited at high-glucose concentrations. This inhibition was attributed to glucose repression of respiratory enzymes as, in the quadruple mutant, respiratory pyruvate dissimilation is essential for ATP synthesis and growth. Serial transfer of the quadruple mutant on high-glucose media yielded a spontaneous mutant with much higher specific growth rates in high-glucose media (up to 0.10 h(-1) at 100 g of glucose. liter(-1)). In aerated batch cultures grown on 400 g of glucose. liter(-1), this engineered S. cerevisiae strain produced over 200 g of glycerol. liter(-1), corresponding to a molar yield of glycerol on glucose close to unity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Overkamp</LastName>
<ForeName>Karin M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Kluyver Laboratory of Biotechnology, Delft University of Technology, NL-2628 BC Delft, Amsterdam.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bakker</LastName>
<ForeName>Barbara M</ForeName>
<Initials>BM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kötter</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luttik</LastName>
<ForeName>Marijke A H</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Van Dijken</LastName>
<ForeName>Johannes P</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pronk</LastName>
<ForeName>Jack T</ForeName>
<Initials>JT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005994">Glycerophosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NTI6P3O4X</RegistryNumber>
<NameOfSubstance UI="C029620">alpha-glycerophosphoric acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PDC6A3C0OX</RegistryNumber>
<NameOfSubstance UI="D005990">Glycerol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018929" MajorTopicYN="N">Cell Culture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005990" MajorTopicYN="N">Glycerol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005994" MajorTopicYN="N">Glycerophosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12039737</ArticleId>
<ArticleId IdType="pmc">PMC123913</ArticleId>
<ArticleId IdType="doi">10.1128/aem.68.6.2814-2821.2002</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 1996 May 27;387(1):7-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8654569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1979 Jul;139(1):152-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">378952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Jun 15;499(1-2):41-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Feb;183(4):1441-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1996 Oct;12(13):1331-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8923738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2001 May;18(7):611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11329172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Jan;182(2):540-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10629208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1994 Mar;140 ( Pt 3):601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8012582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 2;276(5):3555-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11058591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2001 Oct;3(4):301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11676566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Jul 1;357(Pt 1):117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11415442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1998 Jun;62(2):334-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1987 Aug 5;30(2):325-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18581316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1996 Sep-Oct;12(5):591-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8879153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2001 Jan;25(1):15-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Sep;65(9):4216-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10473437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2001 May;18(7):663-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11329176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1997 Nov;21(3):231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9451815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Sep 18;273(38):24529-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1999 Aug;45(8):695-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10528402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1993 Oct;9(10):1121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8256521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1992 Aug 17;308(2):130-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1499720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1957 Jul;5(4):197-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13459307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1992 Jul;8(7):501-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2001 Jun;19(3):201-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14538083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jul 1;24(13):2519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8692690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2001 Jun;55(6):686-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Dec;182(24):7007-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1993 Nov;10(4):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7934848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Jul;172(7):3909-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2193925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1991 Sep;228(3):401-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1896011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1999 May 1;174(1):73-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10234824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1990 Mar;136(3):395-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1975265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 May;182(10):2823-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10781551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1993 May;8(3):559-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8326866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Aug;180(16):4051-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9696750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2000 Jun 1;26(9-10):706-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10862876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Sep;175(17):5520-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8366037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Mar 15;14(4):347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9559543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Jun 21;252(5013):1668-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2047876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2000 Spring;84-86:543-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Genet. 1995 Apr;47(4):175-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7628118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Jul;13(9):783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jan 30;273(5):2977-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9446611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
<region>
<li>Hollande-Septentrionale</li>
</region>
<settlement>
<li>Amsterdam</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bakker, Barbara M" sort="Bakker, Barbara M" uniqKey="Bakker B" first="Barbara M" last="Bakker">Barbara M. Bakker</name>
<name sortKey="Kotter, Peter" sort="Kotter, Peter" uniqKey="Kotter P" first="Peter" last="Kötter">Peter Kötter</name>
<name sortKey="Luttik, Marijke A H" sort="Luttik, Marijke A H" uniqKey="Luttik M" first="Marijke A H" last="Luttik">Marijke A H. Luttik</name>
<name sortKey="Pronk, Jack T" sort="Pronk, Jack T" uniqKey="Pronk J" first="Jack T" last="Pronk">Jack T. Pronk</name>
<name sortKey="Van Dijken, Johannes P" sort="Van Dijken, Johannes P" uniqKey="Van Dijken J" first="Johannes P" last="Van Dijken">Johannes P. Van Dijken</name>
</noCountry>
<country name="Pays-Bas">
<region name="Hollande-Septentrionale">
<name sortKey="Overkamp, Karin M" sort="Overkamp, Karin M" uniqKey="Overkamp K" first="Karin M" last="Overkamp">Karin M. Overkamp</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002761 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002761 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12039737
   |texte=   Metabolic engineering of glycerol production in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12039737" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020